{{{ /*----------------------------------------------------------------------------*/ /* Copyright (c) 2017-2018 FIRST. All Rights Reserved. */ /* Open Source Software - may be modified and shared by FRC teams. The code */ /* must be accompanied by the FIRST BSD license file in the root directory of */ /* the project. */ /*----------------------------------------------------------------------------*/ package frc.robot; import edu.wpi.first.wpilibj.TimedRobot; import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard; import com.ctre.phoenix.motorcontrol.can.*; import com.ctre.phoenix.motorcontrol.FeedbackDevice; /** * The VM is configured to automatically run this class, and to call the * functions corresponding to each mode, as described in the TimedRobot * documentation. If you change the name of this class or the package after * creating this project, you must also update the build.gradle file in the * project. */ public class Robot extends TimedRobot { private WPI_TalonSRX leftMotor, rightMotor; /** * This function is run when the robot is first started up and should be * used for any initialization code. */ @Override public void robotInit() { // CAN motor controllers connected to CAN bus (addrs 3,4) leftMotor = new WPI_TalonSRX(3); rightMotor = new WPI_TalonSRX(4); // clear any previously configured settings leftMotor.configFactoryDefault(); rightMotor.configFactoryDefault(); // Quadrature encoders are connected directly to the motor controllers leftMotor.configSelectedFeedbackSensor(FeedbackDevice.QuadEncoder); rightMotor.configSelectedFeedbackSensor(FeedbackDevice.QuadEncoder); } /** * This function is called every robot packet, no matter the mode. Use * this for items like diagnostics that you want ran during disabled, * autonomous, teleoperated and test. * *

This runs after the mode specific periodic functions, but before * LiveWindow and SmartDashboard integrated updating. */ @Override public void robotPeriodic() { // Encoders connected to CAN controller return raw counts int l_raw = leftMotor.getSelectedSensorPosition(); int r_raw = rightMotor.getSelectedSensorPosition(); // display distances on smart dashboard SmartDashboard.putNumber("Left", raw2inches(l_raw, 360*2, 7.5)); SmartDashboard.putNumber("Right", raw2inches(r_raw, 360*2, 7.5)); } double raw2inches(int raw_count, int counts_per_rotation, double wheel_diameter) { return (raw_count / counts_per_rotation) * (3.141492 * wheel_diameter); } /** * This code runs when you enable autonomous mode */ @Override public void autonomousInit() { // Reset encoder counts to 0 leftMotor.setSelectedSensorPosition(0); rightMotor.setSelectedSensorPosition(0); // start motors turning forward at 20% power leftMotor.set(0.20); // to go forward, left motor turns clockwise, right motor counter-clockwise rightMotor.set(-0.20); } /** * This function is called periodically during autonomous. */ @Override public void autonomousPeriodic() { int l_raw = leftMotor.getSelectedSensorPosition(); int r_raw = rightMotor.getSelectedSensorPosition(); if ((raw2inches(l_raw, 360*2, 7.5) > 36.0) || (raw2inches(r_raw, 360*2, 7.5) > 36.0)) { leftMotor.stopMotor(); rightMotor.stopMotor(); } } /** * This function is called periodically during operator control. */ @Override public void teleopPeriodic() { } /** * This function is called periodically during test mode. */ @Override public void testPeriodic() { } } }}}