Changes between Version 3 and Version 4 of Playbook/Engineering/MotorSelectionPhysics


Ignore:
Timestamp:
Feb 11, 2018, 12:56:09 AM (7 years ago)
Author:
Timothy Lin
Comment:

torque analysis case study

Legend:

Unmodified
Added
Removed
Modified
  • Playbook/Engineering/MotorSelectionPhysics

    v3 v4  
    77
    88}}}
     9
     10With the plethora of requirements, motors, gearboxes, pulley systems, etc., how do you choose which motor and gearbox(es) to use? How do you know they will
    911
    1012The example/case study below (in the green boxes) are probably more intuitive and easier to follow than the theory presented first in each section, but the theory discusses the why and how.
     
    177179* gearing, etc.
    178180
     181----
     182
     183We'll need to analyze:
     1841. required torque and available torque
     185    --> torque determines motor speed, which determines your actual output/linear speeds
     1862. current draw
     187based on a choice of
     188* motor
     189* gear ratio
     190
     191'''Torque Analysis'''\\
     192The torque/force induced by your load is the driving force for the kinematics of the mechanism. From the system, you can figure out the particular force
     193
    179194{{{
    180195#!div style="border:1pt solid; color:green; text-align:left; font-size:100%;"
     
    212227    The force available to lift the 600 N robot at the output will be divided by the radius (read: smaller radii enable more force with less deflection).
    213228* The following gear ratios are available in stock (either in the shop or from a manufacturer) in the form of a "standard" gearbox:
    214   * 1:16
    215   * 1:10
    216   * 1:8
    217   * 1:4
     229  * 1:100
     230  * 1:80
     231  * 1:60
     232  * 1:20
    218233
    219234Let's take a loop at the motor curve for the 775pro:
     
    221236[[Image(http://content.vexrobotics.com/motors/217-4347-775pro/775pro-motor-curve-20151208.PNG)]]
    222237
    223 '''Stall Torque Analysis'''\\
    224 From the design of a 2 in. (.05 m) radius drum at the output, we need an output torque of at least 30 Nm
    225 
    226 '''Peak Power Analysis'''\\
    227 
    228 '''Peak Efficiency Analysis'''\\
     238'''Torque Analysis'''\\
     239From the design of a 2 in. (.05 m) radius drum at the output, we need an output torque of at least '''30 Nm'''. Note that {{{output torque}}} is related to {{{motor torque}}}:
     240    {{{output_torque}}} = {{{motor torque}}} / {{{gear ratio}}}
     241where in this case gear ratio is expressed as 1:n (sometimes it is represented as the opposite; sometimes it ''is'' the opposite)
     242
     243@ Stall Torque of 0.71 Nm: A 1:60 gearbox would get us there.
     244    {{{motor torque}}} = 30 Nm * (1/60) = 0.50 Nm needed
     245
     246But stall torque generally serves only as an upper limit (if stall torque + gear ratio isn't enough, it can't be done; but if it is enough, you still need to crunch numbers a bit).
     247
     248For the hypothetical gear ratios available for this motor:
     249
     250{{{#!th align=center
     251'''Torque at Output'''
     252}}}
     253{{{#!th align=center
     254'''Gear Ratio'''
     255}}}
     256{{{#!th align=center
     257'''Torque at Motor'''
     258}}}
     259{{{#!th align=center
     260'''Speed at Motor'''\\
     261(from Motor Curve)
     262}}}
     263{{{#!th align=center
     264'''Speed at Output'''
     265}}}
     266{{{#!th align=center
     267'''Linear Speed'''
     268}}}
     269|----------------
     270{{{#!td align=center
     27130 Nm
     272}}}
     273{{{#!td align=center
     2741:100
     275}}}
     276{{{#!td align=center
     2770.3 Nm
     278}}}
     279{{{#!td align=center
     28010,800 RPM
     281}}}
     282{{{#!td align=center
     283108 RPM
     284}}}
     285{{{#!td align=center
     2860.57 m/s = 1.87 ft/s
     287}}}
     288|----------------
     289{{{#!td align=center
     29030 Nm
     291}}}
     292{{{#!td align=center
     2931:80
     294}}}
     295{{{#!td align=center
     2960.375 Nm
     297}}}
     298{{{#!td align=center
     2998500 RPM
     300}}}
     301{{{#!td align=center
     302106.25 RPM
     303}}}
     304{{{#!td align=center
     3050.57 m/s = 1.87 ft/s
     306}}}
     307|----------------
     308{{{#!td align=center
     30930 Nm
     310}}}
     311{{{#!td align=center
     3121:60
     313}}}
     314{{{#!td align=center
     3150.5 Nm
     316}}}
     317{{{#!td align=center
     3185500 RPM
     319}}}
     320{{{#!td align=center
     32191.67 RPM
     322}}}
     323{{{#!td align=center
     3240.48 m/s = 1.57 ft/s
     325}}}
     326|----------------
     327{{{#!td align=center
     32830 Nm
     329}}}
     330{{{#!td align=center
     3311:20
     332}}}
     333{{{#!td align=center
     3341.5 Nm
     335}}}
     336{{{#!td align=center
     3370 RPM
     338}}}
     339{{{#!td align=center
     3400 RPM
     341}}}
     342{{{#!td align=center
     3430 m/s = 0 ft/s
     344}}}
     345|----------------
     346
     347From this table, we see that we can't use the 1:20 gearbox, as it doesn't provided enough output torque given our load and design. But we ''can'' use any other others: 1:100, 1:80, and 1:60. These give us 2 distinct speeds in this to choose from.
     348
     349'''Current Analysis'''\\
     350The other factor we need to take into account is the current draw of the motor. Circuit breakers will trip if both
     3511. a current threshold is reached, and
     3522. current is above for a certain amount of time.
     353
     354That is, breakers won't trip for short peaks.
     355
     356For each of the motor speeds above, there is an associated current
    229357
    230358}}}