223 | | '''Stall Torque Analysis'''\\ |
224 | | From the design of a 2 in. (.05 m) radius drum at the output, we need an output torque of at least 30 Nm |
225 | | |
226 | | '''Peak Power Analysis'''\\ |
227 | | |
228 | | '''Peak Efficiency Analysis'''\\ |
| 238 | '''Torque Analysis'''\\ |
| 239 | From the design of a 2 in. (.05 m) radius drum at the output, we need an output torque of at least '''30 Nm'''. Note that {{{output torque}}} is related to {{{motor torque}}}: |
| 240 | {{{output_torque}}} = {{{motor torque}}} / {{{gear ratio}}} |
| 241 | where in this case gear ratio is expressed as 1:n (sometimes it is represented as the opposite; sometimes it ''is'' the opposite) |
| 242 | |
| 243 | @ Stall Torque of 0.71 Nm: A 1:60 gearbox would get us there. |
| 244 | {{{motor torque}}} = 30 Nm * (1/60) = 0.50 Nm needed |
| 245 | |
| 246 | But stall torque generally serves only as an upper limit (if stall torque + gear ratio isn't enough, it can't be done; but if it is enough, you still need to crunch numbers a bit). |
| 247 | |
| 248 | For the hypothetical gear ratios available for this motor: |
| 249 | |
| 250 | {{{#!th align=center |
| 251 | '''Torque at Output''' |
| 252 | }}} |
| 253 | {{{#!th align=center |
| 254 | '''Gear Ratio''' |
| 255 | }}} |
| 256 | {{{#!th align=center |
| 257 | '''Torque at Motor''' |
| 258 | }}} |
| 259 | {{{#!th align=center |
| 260 | '''Speed at Motor'''\\ |
| 261 | (from Motor Curve) |
| 262 | }}} |
| 263 | {{{#!th align=center |
| 264 | '''Speed at Output''' |
| 265 | }}} |
| 266 | {{{#!th align=center |
| 267 | '''Linear Speed''' |
| 268 | }}} |
| 269 | |---------------- |
| 270 | {{{#!td align=center |
| 271 | 30 Nm |
| 272 | }}} |
| 273 | {{{#!td align=center |
| 274 | 1:100 |
| 275 | }}} |
| 276 | {{{#!td align=center |
| 277 | 0.3 Nm |
| 278 | }}} |
| 279 | {{{#!td align=center |
| 280 | 10,800 RPM |
| 281 | }}} |
| 282 | {{{#!td align=center |
| 283 | 108 RPM |
| 284 | }}} |
| 285 | {{{#!td align=center |
| 286 | 0.57 m/s = 1.87 ft/s |
| 287 | }}} |
| 288 | |---------------- |
| 289 | {{{#!td align=center |
| 290 | 30 Nm |
| 291 | }}} |
| 292 | {{{#!td align=center |
| 293 | 1:80 |
| 294 | }}} |
| 295 | {{{#!td align=center |
| 296 | 0.375 Nm |
| 297 | }}} |
| 298 | {{{#!td align=center |
| 299 | 8500 RPM |
| 300 | }}} |
| 301 | {{{#!td align=center |
| 302 | 106.25 RPM |
| 303 | }}} |
| 304 | {{{#!td align=center |
| 305 | 0.57 m/s = 1.87 ft/s |
| 306 | }}} |
| 307 | |---------------- |
| 308 | {{{#!td align=center |
| 309 | 30 Nm |
| 310 | }}} |
| 311 | {{{#!td align=center |
| 312 | 1:60 |
| 313 | }}} |
| 314 | {{{#!td align=center |
| 315 | 0.5 Nm |
| 316 | }}} |
| 317 | {{{#!td align=center |
| 318 | 5500 RPM |
| 319 | }}} |
| 320 | {{{#!td align=center |
| 321 | 91.67 RPM |
| 322 | }}} |
| 323 | {{{#!td align=center |
| 324 | 0.48 m/s = 1.57 ft/s |
| 325 | }}} |
| 326 | |---------------- |
| 327 | {{{#!td align=center |
| 328 | 30 Nm |
| 329 | }}} |
| 330 | {{{#!td align=center |
| 331 | 1:20 |
| 332 | }}} |
| 333 | {{{#!td align=center |
| 334 | 1.5 Nm |
| 335 | }}} |
| 336 | {{{#!td align=center |
| 337 | 0 RPM |
| 338 | }}} |
| 339 | {{{#!td align=center |
| 340 | 0 RPM |
| 341 | }}} |
| 342 | {{{#!td align=center |
| 343 | 0 m/s = 0 ft/s |
| 344 | }}} |
| 345 | |---------------- |
| 346 | |
| 347 | From this table, we see that we can't use the 1:20 gearbox, as it doesn't provided enough output torque given our load and design. But we ''can'' use any other others: 1:100, 1:80, and 1:60. These give us 2 distinct speeds in this to choose from. |
| 348 | |
| 349 | '''Current Analysis'''\\ |
| 350 | The other factor we need to take into account is the current draw of the motor. Circuit breakers will trip if both |
| 351 | 1. a current threshold is reached, and |
| 352 | 2. current is above for a certain amount of time. |
| 353 | |
| 354 | That is, breakers won't trip for short peaks. |
| 355 | |
| 356 | For each of the motor speeds above, there is an associated current |