/*----------------------------------------------------------------------------*/
/* Copyright (c) 2017-2018 FIRST. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in the root directory of */
/* the project. */
/*----------------------------------------------------------------------------*/
package frc.robot;
import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import com.ctre.phoenix.motorcontrol.can.*;
import com.ctre.phoenix.motorcontrol.FeedbackDevice;
/**
* The VM is configured to automatically run this class, and to call the
* functions corresponding to each mode, as described in the TimedRobot
* documentation. If you change the name of this class or the package after
* creating this project, you must also update the build.gradle file in the
* project.
*/
public class Robot extends TimedRobot {
private WPI_TalonSRX leftMotor, rightMotor;
/**
* This function is run when the robot is first started up and should be
* used for any initialization code.
*/
@Override
public void robotInit() {
// CAN motor controllers connected to CAN bus (addrs 3,4)
leftMotor = new WPI_TalonSRX(3);
rightMotor = new WPI_TalonSRX(4);
// clear any previously configured settings
leftMotor.configFactoryDefault();
rightMotor.configFactoryDefault();
// Quadrature encoders are connected directly to the motor controllers
leftMotor.configSelectedFeedbackSensor(FeedbackDevice.QuadEncoder);
rightMotor.configSelectedFeedbackSensor(FeedbackDevice.QuadEncoder);
}
/**
* This function is called every robot packet, no matter the mode. Use
* this for items like diagnostics that you want ran during disabled,
* autonomous, teleoperated and test.
*
* <p>This runs after the mode specific periodic functions, but before
* LiveWindow and SmartDashboard integrated updating.
*/
@Override
public void robotPeriodic() {
// Encoders connected to CAN controller return raw counts
int l_raw = leftMotor.getSelectedSensorPosition();
int r_raw = rightMotor.getSelectedSensorPosition();
// display distances on smart dashboard
SmartDashboard.putNumber("Left", raw2inches(l_raw, 360*2, 7.5));
SmartDashboard.putNumber("Right", raw2inches(r_raw, 360*2, 7.5));
}
double raw2inches(int raw_count, int counts_per_rotation, double wheel_diameter) {
return (raw_count / counts_per_rotation) * (3.141492 * wheel_diameter);
}
/**
* This code runs when you enable autonomous mode
*/
@Override
public void autonomousInit() {
// Reset encoder counts to 0
leftMotor.setSelectedSensorPosition(0);
rightMotor.setSelectedSensorPosition(0);
// start motors turning forward at 20% power
leftMotor.set(0.20);
// to go forward, left motor turns clockwise, right motor counter-clockwise
rightMotor.set(-0.20);
}
/**
* This function is called periodically during autonomous.
*/
@Override
public void autonomousPeriodic() {
int l_raw = leftMotor.getSelectedSensorPosition();
int r_raw = rightMotor.getSelectedSensorPosition();
if ((raw2inches(l_raw, 360*2, 7.5) > 36.0) ||
(raw2inches(r_raw, 360*2, 7.5) > 36.0)) {
leftMotor.stopMotor();
rightMotor.stopMotor();
}
}
/**
* This function is called periodically during operator control.
*/
@Override
public void teleopPeriodic() {
}
/**
* This function is called periodically during test mode.
*/
@Override
public void testPeriodic() {
}
}